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Abstract—Alternatively inferring on the visual facts and commonsense is fundamental for an advanced visual question answering

(VQA) system. This ability requires models to go beyond the literal understanding of commonsense. The system should not just treat

objects as the entrance to query background knowledge, but fully ground commonsense to the visual world and imagine the possible

relationships between objects, e.g., “fork, can lift, food”. To comprehensively evaluate such abilities, we propose a VQA benchmark,

Compositional Reasoning on vIsion and Commonsense(CRIC), which introduces new types of questions about CRIC, and an

evaluation metric integrating the correctness of answering and commonsense grounding. To collect such questions and rich additional

annotations to support the metric, we also propose an automatic algorithm to generate question samples from the scene graph

associated with the images and the relevant knowledge graph. We further analyze several representative types of VQA models on the

CRIC dataset. Experimental results show that grounding the commonsense to the image region and joint reasoning on vision and

commonsense are still challenging for current approaches. The dataset is available at https://cricvqa.github.io.

Index Terms—Visual question answering, compositional reasoning, commonsense reasoning, dataset construction

Ç

1 INTRODUCTION

VISUAL intelligence has made great progress in many spe-
cific tasks, such as image classification [1], [2], [3], object

detection [4], [5], and relationship detection [6], [7]. How-
ever, it is still a formidable challenge to answer a natural lan-
guage question about an image (i.e., Visual Question
Answering task, VQA), which requires a system to realize a
wide range of abilities. In the past few years, [8], [9] first pro-
pose the VQAbenchmarks, where the tasks are to answer rel-
atively simple questions about the object name, attribute, like
Q1 in Fig. 1. Further works expand the scope of the VQA task
along with two orthogonal directions: 1) [10], [11], [12]
extend the questions about querying information of a single
visual object to questions that require multi-hop reasoning
on visual relations among multiple objects, like Q2. 2) [13],
[14], [15] expand the questions from only querying relatively
shallow visual information of an object to querying non-
visual knowledge of an object in the image, like Q3. For
visual-related abilities, this type of questions usually require
relatively simple abilities, such as object recognition.

However, it is a pipe dream for AI to jointly infer on
commonsense relations among entities and perform multi-
hop reasoning on vision and knowledge. For example, to
answer Q4 in Fig. 1, an AI agent is required to not only infer
the explicit semantic spatial relation, eggs on plate based on
what it sees in the image, but more importantly infer the
implicit commonsense relation between the objects based
on what it knows about the world, fork can move eggs. It is a
higher level of visual commonsense reasoning. The AI
agents should not just treat objects as the entrance to query
background knowledge, but fully ground commonsense to
the visual world and imagine the possible relationships
between objects, as shown in the top of Fig. 1. Therefore,
this paper aims to extend the VQA task along with both
directions and introduces a new VQA benchmark about
Compositional Reasoning on vIsion and Commonsense.

The VQA task at the intersection of vision, language and
commonsense makes fairly evaluating the models challeng-
ing. The commonsense-related questions derived from nat-
ural images are inevitable to mirror some priors inherent in
the real world. These priors could be the hints for a model
to achieve high scores by guessing the answers, e.g., the
word cut in a question could be a hint for answering knife.
Thus, to create a commonsense-related VQA dataset, it is
crucial to reduce the impact of commonsense priors to fairly
evaluate whether the model truly understands the vision
and commonsense. To achieve this goal, we introduce two
essential features to the CRIC. 1) We carefully design some
new types of compositional questions to force models to
look at the images, e.g., query the attribute of an object that
meets a commonsense requirement, like Q4. 2) We not only
use the correctness of the final answers to evaluate the
model, but also the correctness of the intermediate ground-
ing results, i.e., the model has to correctly find the object
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that meets the requirement of the question. Only when both
two metrics are correct, one question is considered correctly
answered.

To achieve these two features, we need strictly control
the content of questions and collect rich annotations. The
cost will be very high if the dataset is purely manually col-
lected. Therefore, we propose a generator to automatically
output question-answer pairs. Specifically, we dynamically
assemble the question template from predefined template
components for a given scene graph of the images and the
relevant knowledge graph. Along with the question and the
answer, we also automatically generate rich annotations for
each sample to ease the difficulty of diagnosing a model,
including the reasoning steps and their ground truth out-
puts of answering questions.

To support such a generator, we first need to collect
scene graphs and knowledge graphs as the basis to provide
object-level visual information and knowledge. Thanks to
the Visual Genome dataset [16], the scene graphs of images
are easy to get. However, the collection of knowledge
graphs faces new challenges. To generate compositional
questions, we need object-level knowledge which depicts
the commonsense relations between objects. However, as
shown in Fig. 2a, the current format of existing available
knowledge items (e.g., items in ConceptNet [17]) are on the
event-level, which makes commonsense relation between
objects hard to be effectively represented. Rich information
are simply stored in a triplet format < head, relation, tail> to
represent coarse-grained relations (e.g., is used for, can)
between an object and an event, where the triplet has to mix
up many detailed relations about multiple objects in phrase
form (e.g., moving food from plate to mouth) as a head or tail
entity. Obviously, the phrase type entity is difficult to be

aligned to visual objects, let alone to represent our desired
commonsense relations between objects. To tackle this issue,
we collect the original items from existing knowledge graph
(e.g., ConceptNet), then decompose phrase-formed entities
into a finer granularity, i.e., object-level nodes, and re-orga-
nize the original head and tail entities as graphs to obtain
graph-to-graph format, as shown in Fig. 2b. The graph-to-
graph format item is much easier to be aligned to objects in
images and can depict more informative commonsense rela-
tions (e.g., can lift, can move, etc.) between the objects (e.g.,
fork, can lift, food).

We further evaluate several representative types of VQA
models on the CRIC dataset to analyze the advantages and
disadvantages of them. In addition, we leverage the well
studied modular network [18], [19] and our provided out-
put of every function in programs to provide a detailed
analysis of the main challenges of the CRIC. The experi-
ments show that current joint representation of common-
sense and vision limits the grounding the commonsense to
the images and performing compositional reasoning on
vision and commonsense, and cumulative error restricts the
multi-step reasoning performance of modular networks.

To summarize, the contributions of this paper are as fol-
lows: 1) We propose a new benchmark CRIC which introdu-
ces new types of questions for fairly evaluating the ability of
compositional reasoning on visual and commonsense. 2) To
build a dataset to support such task at a proper cost, we pro-
pose an dynamic template assembly dataset construction
method to collect question-answer pairs and rich additional
annotations. 3) To collect satisfactory knowledge items to
generate compositional questions, we introduce a new
graph-to-graph format for representing the knowledge
items. 4) Further experiments provide detailed analyses
about the representation and reasoning abilities of the exist-
ing several representative types of VQA methods and the
challenges of sub-tasks in CRIC.

2 RELATED WORK

VQA Dataset. At the early stage, COCO-QA [8] and
DAQUAR [9] focus on evaluating a range of visual abilities
about querying the visual information of a visual entity,
e.g., recognizing the category or attributes of an object. Fur-
ther works [10], [25], [26], [27], [28], such as VQA [10],
extend the scope of questions by requiring understanding
visual relations between objects. [28] examines whether the

Fig. 1. Examples of four styles of questions. Q1. Querying visual infor-
mation of an object. Q2. Multi-hop reasoning on visual relations. Q3.
Querying non-visual knowledge about an object. Note that, though the
Q3 involves two object names, “object” and “food”, but only “object”
refers to the object in the image. Q4. Multi-hop reasoning on both visual
and commonsense relations. Black arrow indicates the visual relation,
and purple arrow indicates the commonsense relation.

Fig. 2. Examples of triplet format versus graph-to-graph format knowl-
edge items. (a): The triplet format item (coming from ConceptNet [17])
usually depicts the relation between an object and an event. (b): Our
graph-to-graph format represents the item in a finer granularity (object-
level nodes), which can be easily aligned to visual objects and depict
more informative commonsense relations between objects. Here in this
case, the head graph has only one single node.
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model is sensitive to the changes of visual relations between
objects by editing images. In addition, CLEVR [11] empha-
sizes the importance of a VQA system on compositional rea-
soning on spatial relations and provides compositional
questions about synthetic images. More recently, GQA [12]
introduces a real-image VQA dataset with compositional
visual questions and a more balanced answer distribution.

Another trend in recent studies [13], [14], [20], [21], [22],
[29] is to expand the scope of the questions by requiring
some commonsense-related abilities. [13] introduces the
FVQA dataset, of which each question relates to one knowl-
edge triplet in Knowledge Graph. The FVQA aims to evalu-
ate the ability of VQA systems on understanding non-visual
background knowledge of the objects. [14] introduces
KVQA dataset containing questions about name entities
knowledge in Wikipedia, rather than common objects, e.g.,
Who is to the left of Barack Obama. The OK-VQA [20] requires
the model to mine the background knowledge of objects
from outside natural language documents, rather than
Knowledge Graph. The VCR dataset [21] focuses on chal-
lenging commonsense reasoning questions, e.g., inferring
why something happened or the mental state of a person.
Unlike previous datasets, which provide external knowl-
edge sources, VCR requires understanding the knowledge
about causal relations, social interactions and physics
acquiring from training samples. [30], [31] introduce addi-
tional textual knowledge about cultural heritage for build-
ing VQA systems in more practical applications. [32], [33],
[34], [35] focus on the joint reasoning on the scene text in the
images, which can also be regarded as one special type of
knowledge provided in images.

Compared to previous datasets, our proposed questions
require the systems to not only use objects as the entrance to
query background knowledge, but fully ground common-
sense to the visual world and imagine the possible relation-
ships of objects. We believe this is a crucial and fundamental
ability for future AI agents. In Table 1, we display the basic
statistics and main characteristics of major VQA datasets

and our proposed CRIC dataset. And, a discussion about
CRIC and themost relevant datasets is in Section 5.

Knowledge Graph. Structured Knowledge Graphs (KGs)
are great sources to provide explicit and well-organized
information for machines. There are two types of KGs
widely used in AI researches, that is, world knowledge
KGs, such as DBpedia [36], Freebase [37], and commonsense
KGs, such as ConceptNet [17] and Webchild [38]. The world
knowledge KGs are broadly used in NLP communities [39],
[40], [41], [42] for supporting the AI agent in answering
knowledge related question. In recent years, many inspiring
works [43], [44] attempt to introduce commonsense KGs in
scene understanding. [13], [45], [46], [47], [48], [49] also use
external knowledge to expand the capability of VQA sys-
tems. [50] is a pioneering work introducing knowledge base
into referring expression tasks.

In commonsense KGs, knowledge is typically represented
by a large set of items in triplet format < head, relation, tail> ,
where head and tail are two entities and relation indicates the
relationship between them. Compared with world knowl-
edge KGs, the items in commonsense KGs have one unique
characteristics: a large number of entities are informative
phrases depicting an event rather than a real “entity”, e.g.,
< bus, is used for, transporting students to school> . The rich
information depicting the relationships between the objects
is simply in a phrase, e.g., bus transport students, busmove to
school. Therefore, compared to previous works that directly
use these KGs into their tasks, we furthur decompose the
triplet items into a new format to mine the information hid-
den in the entities and evaluate the VQA systems on under-
standing suchmore complicated knowledge.

Dataset Construction.Many existing VQA datasets [9], [10],
[13], [20], [24] invite human annotators to collect free-form
and open-ended visual questions. Another branch of
works [8], [11], [12], [26] which focus on evaluating some spe-
cific abilities of VQA models, propose to generate questions
by the template-based method automatically. [8] designs
rules to convert image descriptions into some predefined

TABLE 1
Comparison of Various VQA Datasets

Dataset Year of
Publication

Num. of
Images

Num. of
Questions

Task Focus Scene
Graph

Knowledge
Graph

Functional
Program

CRIC (Ours) - 96K 494K Commonsense
(Compositional)

✓ ✓ ✓

OK-VQA [20] 2019 14K 14K Unstructured Knowledge ✗ ✗ ✗
KVQA [14] 2019 24K 183K Name Entities related

Knowledge
✗ ✓ ✗

VCR [21] 2018 110K 290K Commonsense ✓ ✗ ✗
FVQA [13] 2018 2.2K 5.8K Commonsense ✗ ✓ ✗
KB-VQA [22] 2017 0.7K 2.4K Commonsense ✗ ✗ ✗
GQA [12] 2019 113K 22M Vision (Compositional) ✓ ✗ ✓
CLEVR [11] 2017 100K 999K Vision (Compositional) ✓ ✗ ✓
PQA [23] 2021 32.9K 157K Perceptual Reasoning ✗ ✗ ✗
VQA v2 [24] 2016 204K 1.1M Vision ✗ ✗ ✗
VQA v1 [10] 2015 204K 614K Vision ✗ ✗ ✗
VQA-abstract
[10]

2015 50K 150K Vision (Scene Graph) ✓ ✗ ✗

COCO-QA [8] 2015 69K 117K Vision ✗ ✗ ✗
DAQUAR [9] 2014 1.4K 12K Vision ✗ ✗ ✗

The last three columns are about the additional annotations provided by the datasets. The CRIC contains compositional questions for commonsense reasoning and
provides rich annotations.
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types of questions. [11] proposes to generate compositional
questions of synthetic images by filling predefined question
templates with elements in scene graphs. [12], [26] design
more diverse templates to generate rich questions querying
about natural images.

Previous automatic question generation methods usually
require predefining almost all possible templates and are
thus less efficient and scalable for generating our desired
questions, which involve large concept vocabulary and
commonsense knowledge. To address this problem, we pro-
pose a new question generator to dynamically assemble the
question template from predefined basic template compo-
nents given the scene graph of an image and a collected
knowledge graph.

3 DATASET CONSTRUCTION

Overview. We introduce CRIC, a new task that challenges AI
systems to ground the commonsense into the visual world
and perform multi-hop reasoning on the real image and the
knowledge graph. To evaluate such abilities, the CRIC pro-
vides 494K balanced and compositional questions on 96K
images along with 3.4K knowledge items. Besides, to ease
the difficulty of designing robust and interpretable systems,
the dataset collects rich annotations about task decomposi-
tion, scene graph and knowledge graph related to every
question, reasoning steps, and corresponding results for
answering every question. Our dataset is constructed in five
main steps: 1) process scene graphs, 2) collect and parse
knowledge triplets, 3) define basic functions that the ques-
tion will involve, 4) automatically generate QA samples
from the scene graphs and the knowledge graph, and 5)
obtain additional annotations, as shown in Fig. 3.

Scene Graph Processing. The CRIC dataset utilizes the
108K images of Visual Genome and their corresponding
Scene Graph annotations to generate QA samples. Scene
graph is a structured representation of an image, where

nodes are objects annotated with attributes and edges con-
nect two related objects.

In this stage, we first clean up the scene graphs by filter-
ing rare concepts and merging synonyms. Our processed
scene graphs contain 1291 distinct objects, 267 attributes,
and 210 relationships. It is also observed that one object in
the image might correspond to multiple object IDs and
bounding boxes in the scene graph. For example, in Fig. 4, it
may be because 1) the table is incomplete, and 2) the edges
of the table are occluded, so the annotators have not reached
a consensus on the table’s bounding box. There are two
bounding boxes that correspond to the same table in the
annotation, i.e., the red box and the yellow one. This will
introduce ambiguity in the later question generation proce-
dure. Thus, we merge bounding boxes that correspond to
the same object name and have a high IoU (> 0.7).

Knowledge Graph Processing. The purposes of this stage
are 1) collecting knowledge that is useful in daily life and
related to the images in Visual Genome and 2) parsing the
triplet format knowledge items into the graph-to-graph
format.

In this paper, our knowledge graph is extracted from a
large-scale commonsense Knowledge Graph, Concept-
Net [17]. The knowledge in ConceptNet is collected from a

Fig. 3. Overview of the QA sample generation process. The question and corresponding annotations are automatically generated from the Scene
Graph of a given image and the Knowledge Graph. Our method first selects the proper part of the Scene Graph and the Knowledge Graph that can
generate a question, then assembles the question template from predefined template components, and finally generates the question-answer pair
along with rich annotations.

Fig. 4. An example that one object corresponds to multiple bounding
boxes.
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variety of resources, such as crowd-sourced resources (e.g.,
Open Mind Common Sense [51]) and expert-created resour-
ces (e.g., WordNet [52] and JMDict [53]), and is represented
in triplet format < head, relation, tail>. To collect satisfactory
knowledge triplets, we query the ConceptNet with all the
concepts in the processed scene graphs and obtain about
225K triplets. Unfortunately, we find that many triplets of
some specific relation types involve subjective opinion that
are unnatural to appear in a vision-related question, e.g.,
< person, Desires, own a house>. Thus, we further invite
annotators to check around 100 examples per relation type
in ConceptNet to determine which relation types usually
involve subjective information. CRIC finally uses 11 types
of relations, as shown in Fig. 5a, which mainly state objec-
tive facts selected from all 34 relation types. In addition, we
carefully refine the items to keep similar events expressed
in the same style (e.g., same sentence structure and predi-
cate) to avoid some special words being hints for guessing
latter generated questions based on these items.

Moreover, we find that collected triplets from Concept-
Net sometimes are incomplete, e.g., ConceptNet tries to
record which objects contain calcium, while only a small

portion of satisfied entities are recorded, like milk and ice
cream. Since knowledge base reasoning usually needs to fol-
low the closed-world assumption [54], i.e., what is not cur-
rently known to be true, is false, we need to make sure all
the entities containing calcium are labeled in our KB. Other-
wise, it could cause our generator to output ambiguous
questions or incorrect answers. Thus, we further collect 372
knowledge items fromWikipedia to make the knowledge in
ConceptNet more complete in such cases.

We also collect two types of categorization knowledge of
the objects fromWikipedia and WordNet. One type is about
trivial category knowledge, e.g., < cat, IsA, animal> , which
is used for referring object in question, e.g., “which animal
can ...?”. Another type is about more professional taxonomy
in specific disciplines, e.g., < cat, IsA, feline>, which is used
for querying model whether know this knowledge, e.g.,
“which animal is a feline?”. CRIC’s professional taxonomy
is about species classification in biology. We refer to
NCBI’s [55] biological classification; if one category appears
in NCBI, we assume it belongs to the professional one.

Finally, we obtain 3,439 carefully selected knowledge
triplets with 11 types of relations, e.g., IsA, UsedFor, HasA.

In Fig. 5a, we present the selected 11 types of relations and
show some examples of each type. The distribution of relation
types in the knowledge graph is shown in Fig. 5b. We can see
that our collected knowledge items are roughly evenly dis-
tributed over the relation types ofUsedFor,CapableOf, IsA-Tax-
onomy, AtLocation, HasProperty. In addition, the word cloud
for frequent object names appearing in the knowledge items
is shown in Fig. 5c. We can see that the knowledge items are
mainly about common object used or seen in daily life, such
as kitchen utensils, foods, appliances, and animals.

In the following, we parse the selected knowledge triplets
into the graph-to-graph format, as shown in Fig. 2b. This
goal is achieved by developing a simple rule-based phrase-
to-graph parser. Our parser first utilizes the Stanford Cor-
eNLP [56] to obtain POS tags of a phrase. Then, we build a
set of POS-to-graph mapping templates, where the phrase-
format entity can be automatically mapped to a graph
according to the POS tags of the words, as shown in Fig. 6. In
Figs. 5d and 5e, we compare the “degree” of entities (head
and tail entities) in our processed KG (denoted as Concept-
Net-V-D, where “-V” denotes “vision”, and “-D” denotes
“Decomposed”) with the original triplet format KG (denoted
as ConceptNet-V-O). For triplet format KG, since the basic
elements in them are entities,we consider two entities as con-
nected (contribute 1 degree) when they are exactly the same;
while in graph-to-graph format KG, two entities (a.k.a
graph-format entities) are considered as connected when
they share at least one object node, since the basic element in
the new format is the node in a graph-format entity. We can
find that introducing the new format items digs out hidden
relations between the items in the original KG and dramati-
cally increases the density of the Knowledge Graph. The
dense connected KG can facilitate us in later building chal-
lengingmulti-hop reasoning questions.

Function Definition. At this stage, we define the basic
functions in the CRIC. There are ten basic functions in the
CRIC dataset, where three commonsense related functions
are unique in CRIC, and the others are similar to those in
CLEVR and GQA, as shown in Fig. 7.

Fig. 5. Statistics of collected knowledge items. (a): Relation types and
their examples in our selected knowledge items. (b): The distribution of
relation types in our selected knowledge graph. (c): Word cloud for fre-
quent object names in our knowledge graph. (d) and (e): The distribution
of entities in the original KG and processed KG with different degrees.
Processing KG digs out the hidden relationships between the items and
dramatically increases the density of the KG.
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Specifically, two functions relate to basic logical opera-
tions: “And”, “Verify”. Four functions are about basic abili-
ties of reasoning on the image: “Find”, “Relate”, “Relate
Reverse”, “Recognition”, where “Find” indicates find the
object for an given object or attribute name, “Relate” indi-
cates the task that given subject and predicate in a scene graph
relationship < subject, predicate, object>, the model needs to
locate the region of object, while “Relate Reverse” indicates
that given predicate and object, the model locates the region of
subject, and “Recognition” corresponds to a set of subtasks,
such as, recognizing color, recognizing animal, etc. More-
over, we propose three new functions related to the
commonsense reasoning: “Find KG”, “Find KG Reverse”,
“Find Hypyernym”. “Find KG” and “Find KG Reverse”
require the model to find image regions that satisfy a
commonsense query, e.g., find a proper object and fill it in
the BLANK in query < cleaning BLANK, HasSubevent, using
the VISION (washing machine)> to make the statement in
accordance with commonsense. Note that, the commonsense
query could be multi-modal, e.g., the washing machine in the
above query can be a text or a region containing washing
machine which is outputted by another module. “Find
Hypyernym” is required to find the object for a given

category name, e.g., find all objects in an imagewhich belong
to vehicle. Finally, we design a simple function, “Initial” to
attend on all objects, which is usually used at the functional
program’s start. In the supplementary material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3210780,
we providemore details of these functions.

Template Collection & Question Generation. In this section,
we introduce a scalable and low-cost question generator to
automatically create numerous questions by imitating the
procedure of humans creating a complex question. As
shown in Fig. 3, one question is generated from a dynami-
cally composed question template based on a sub-graph
composed of a sub-scene graph and a sub-knowledge
graph. Specifically, we first build two types of template
components. One type is to query one element in a visual
triplet or a knowledge item, e.g., the template of querying
color “what color/which color/... is the < subject> ?”,
where < subject> will be filled in based on the graph anno-
tation. The other one is about how to use a visual triplet or a
knowledge item to decorate one object, e.g., the < object_1>
(apple) that < be_2> (is) < predicate_2> (on) < object_2>
(the plate). To increase the diversity of the question, one
template component usually has multiple versions that will
be randomly chosen to generate the question.

Then, the question is generated in the following steps: 1)
One visual relation or knowledge item is selected to gener-
ate the core part of the question. 2) Proper relations and
attributes are added to decorate the core question, when the
core question contains limited information to precisely
locate the image region, or we want to provide additional
information to locate the image region. 3) The template of
the question will be automatically composed of basic tem-
plate components. 4) The blanks in the template will be
filled in based on the scene graph and the knowledge graph.
In Fig. 9 and further in the supplementary material, avail-
able online, we show some QA samples in the CRIC.

Note that, the questions derived from real images and
common knowledge will naturally mirror some priors in the
real world. These priors could be the hints for models to
achieve high scores by guessing the answers without truly
understanding the images and knowledge, e.g., the word cut
in a question could be a hint for answering knife. Therefore, to
propose questions that can fairly evaluate the models, we
carefully design some new types of compositional commonsense
questions (the question types in the CRIC are shown in
Fig. 8a). For example, we design QueryAtt, QueryObjSG and
VerifyAtt types of questions to require recognizing visual
attribute or spatial reasoning after commonsense reasoning
to force models looking at the image, e.g., Q6, 7, 10, etc. in

Fig. 6. Pipeline of parsing a phrase-format entity into a graph-format entity. The “NONE” in POS to graph alignment indicates that the word doesn’t
need to be assigned to the graph template. The “NULL” inGraph-format entity indicates that no word is assigned to this element in the template.

Fig. 7. Catalog of basic functions evaluated in questions of the CRIC
dataset.
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Fig. 9. Besides, we let the question generator sometimes
replace an element in knowledge items with a referring
expression, e.g., Q4 in Fig. 1 and Q4, 12 in Fig. 9, to avoid fre-
quently involved knowledge expressions being used as hints.

Obtaining Additional Annotations. For every QA sample in
the CRIC dataset, we provide the question and answer,
along with additional annotations, including sub-graph
needed for answering the question, the functional program
of answering and the ground-truth output of every function
in the program, as shown in Fig. 3. The sub-scene graph &
sub-knowledge graph and the functional program can be
automatically generated during the question generation. To
collect the ground-truth of each function, at every step of
the program, we search on the scene graph and knowledge
graph to find candidate objects that satisfy all previous
functions’ requirements simultaneously.

Now, we obtain 3M automatically generated QA sam-
ples. However, these samples are highly unbalanced. To
avoid the model overfitting on the bias of the dataset, we
balance the dataset by filtering the QA samples based on
the distribution of answers and the distribution of knowl-
edge items involved in the questions. Finally, we obtain the
CRIC dataset which contains 96,241 images with 494,350 QA
samples and 3,439 knowledge triplets.

Quality Control. To guarantee the quality of the dataset, it
is crucial to validate the correctness of the annotations. We
have manually validated the correctness during dataset con-
struction to ensure quality at each key stage. 1) Module vali-
dation: Our question and additional annotation generators
are both modularized. We test on more than 100 samples in
different images for each module to confirm they accurately

work. 2) Consistency validation: A natural language question
and corresponding function layout are two expressions for
the same question. Thus, we validate the correctness of both
by checking if the two annotations are mutual-consistent,
e.g., if their answers are the same.

3) Automatic Language Quality Assessment: We also use a
Transformer-based language assessment tool, grammatical-
ity score (GS) in GRUEN [57], to automatically measure the
quality of questions in CRIC. The GS of CRIC and VQA v2,
a natural VQA dataset with human annotated questions,
under each question length is shown in Fig. 10. It can be
seen that there is a slight gap between our grammatical
score and the VQA v2 dataset; however, we believe that the
score of CRIC is within a reasonable range. but we believe
that the score of CRIC is within a reasonable range. The
paper of GRUEN showed the Grammaticality Scores of
some example sentences. A correct sentence achieved 0.7
score, and a similar sentence with incorrect passive voice
expression only got 0.2 score. In addition, to more intui-
tively evaluate CRIC’s grammar quality, we used GingerIt,
a widely used grammar checker, to provide revision sug-
gestions for CRIC questions. It reported that for 90.2% of
CRIC questions, GingerIt suggests no modification is
needed. For the remaining questions, the recommendations
can be summarized as the following three categories: i) The
use of prepositions. “What object is on the tub” is revised to
“What object is in the tub”. “writing at it” is revised to
“writing on it”. These prepositions are mainly derived from
scene graph annotations and the knowledge graph. In many
cases, GingerIt recommends to modify the uncommon
phrase, but the original expression based on SG and KG
may be more precise. ii) Spelling of words. For example,
“upperbody” is revised to “upper body”, “carnivora” is
revised to “carnivore”. ii) Adding comma. “Is the wooden
object usually used for resting?” is revised to “Is the
wooden object, usually used for resting?”. In short, these
suggestions indicate that some of the compositional ques-
tions in CRIC may be uncommon, but their grammar is basi-
cally qualified. 4) Human Study: After generating, we then
randomly select about 10,000 samples (i.e., about 2% out of
the total 494,350 questions) from images covering various
scenes to check their correctness.

The images and corresponding QA samples of the data-
set are randomly split into the train (70%), validation (10%),
and test (20%). The question contains on average 12 words
and involves on average 6 functions. In Fig. 8b, we show the
distribution of the question length of several VQA datasets.
The CRIC has a relatively balanced distribution of question
length and is relatively longer than other datasets. In
Fig. 8c, from the presented frequent answers of the CRIC,
we can see that although all questions are related to
commonsense, a lot of answers do not come from the
knowledge items, e.g., brown, large. These questions will
force models to look at the images based on the results of
commonsense reasoning. From Fig. 8d, we can see that our
CRIC has a relatively balanced distribution of functions,
which indicates that the CRIC provides plenty of QA sam-
ples for training each sub-task. Besides, from Fig. 8e, it
shows that our auto-generated questions cover a wide range
of complexities (the questions involve from 2 functions to 7
functions), and more than 70% questions, which involve

Fig. 8. Statistics of questions and answers in CRIC. (a): 5 main catego-
ries of the CRIC questions and their examples. (b): Comparison of ques-
tion length distributions for different VQA datasets. The questions in the
CRIC are generally much longer and have a wide range of lengths. (c):
Word cloud for frequent answers. (d) & (e): Distributions of functions in
overall questions and function number of programs in overall questions.
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more than 4 functions, are relatively complex and require
multi-hop reasoning.

Evaluation Protocol. For evaluation, to further avoid mod-
els achieving high scores by guessing and fairly evaluate
the performances of models, our evaluation metrics con-
sider both the correctness of 1) the answer and 2) the ground-
ing results. More specifically, for each QA sample, a VQA
system is required to provide two results: the answer and
one object selected from our provided candidate objects.
Note that, for yes-no questions, if the answer is yes, the
model should point out the eligible object; if the answer is
no, the model should point out no object. A question is con-
sidered correctly answered when the two results are both
correct. To better evaluate and diagnose the performance of
the reasoning abilities, especially for grounding-related
functions, we provide the bottom-up features [58] cropped
by ground-truth bounding boxes as the image features. In
addition, we classify the questions into two groups, Verify
and Recognize, by checking if the answer is “yes” or “no”.

4 EXPERIMENTS

In this section, we evaluate the performances of four types
of representative methods on the CRIC (Section 4.2.1),

including classical monolithic VQA models, modular VQA
models, KB-aware VQA models, and recent popular visual
BERT to analyze the main challenges of CRIC.

4.1 Baselines

Q-Only: Q-Only model only takes the question features as
input. We implement it with two different models, GRU
and BERT, denoted as Q-Only-GRU and Q-Only-BERT,
respectively.

I-Only: I-Only model only takes the image feature as
input.

SF: SF [59] is a SOTA model on FVQA, which first uses
visual concepts extracted by object, scene, action predictors,
CNN image feature, and LSTM question feature to retrieve
the Top-1 related knowledge item, then uses the question
feature and retrieved knowledge item to predict the answer.

TRiG: TRiG [60] is a SOTA model on OK-VQA, which
first transforms images into texts by image captioning,
dense labeling, and OCR model, then uses these texts to
retrieve the knowledge items, finally feeds all above texts to
the T5 language model to predict the answer. In our imple-
mentation, since our questions don’t involve OCR, we only
use image captioning and dense labeling in knowledge
retrieval and answer prediction.

SAN: Stacked Attention Network [61] is a classical mono-
lithic VQA model on the VQA dataset which performs two-
step soft attention on the image features.

Bottom-Up: Bottom-Up [58] is a classical monolithic VQA
model which proposes object-level reasoning and imple-
ments soft-attention on object regions. The attended image
features and question features are combined to generate the
final answer.

Bottom-Up+latt: Compared to Bottom-Up, this baseline
adds a binary cross-entropy loss on attention score to super-
vise the model to attend on the correct region. Specifically,
attention is supervised in the same way as that of VQA

Fig. 9. Some example questions from the CRIC dataset. Our dataset contains not only the relatively simple commonsense question type similar to
FVQA [13], but also the proposed unique compositional questions for reasoning on vision and commonsense knowledge. These compositional ques-
tions can avoid models answering by guessing through requiring recognizing visual attributes or spatial reasoning after commonsense reasoning to
force models looking at the image to answer.

Fig. 10. The grammaticality score (GS) in GRUEN under each question
length.
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answers. The model predicts the score of each candidate
object to determine whether it is the target object, denoted
as ŝ 2 ½0; 1�. Then, it calculates the loss between the pre-
dicted score and the ground truth in annotations as follows:

L ¼ �
XM

i

XN

j

sijlogðŝijÞ � ð1� sijÞlogð1� ŝijÞ (1)

where the indices i and j run respectively over the M train-
ing questions and N candidate objects, and the ground-
truth score sij is 1=ni, where ni is the number of ground
truth target objects for the i-th question.

NMN-CS: Neural Modular Network (NMN) [18], [19],
[62] is another type of state-of-the-art modular VQA model
on CLEVR dataset. However, its original versions cannot
directly transfer to commonsense questions, so we add
some visual commonsense reasoning modules, denoted as
NMN-CS.

More specifically, the NMN-CS builds upon neural modu-
lar networks in [18] which contains a sequence-to-sequence
network (i.e., program prediction module). It generates the
function layout (a sequence of function names) and the
text inputs of each function (an attended question over
words) for a given question, as shown in Fig. 11a. In addi-
tion, NMN-CS contains a set of modules corresponding to
each function in CRIC. The architecture of pure visual
modules, such as Find, Relate, are similar to the corre-
sponding modules in N2NMN [18]. For commonsense-
related functions, we design some simple networks to
achieve these functions.

First, for the Find_KG module, as shown in Fig. 11b, the
goal is to generate the attention score a over all object candi-
dates fv1; . . . ; vng for a given object feature x generated by
another module and query sequence t. The query sequence
contains three sub-sequences t ¼ ½th; tr; tt�which indicate the

head, relation, and tail in a knowledge item respectively.
These sub-sequences are obtained by implementing self-
attention on the given text inputs generated by program pre-
diction network. Find_KG module first separately encodes
the head, relation, and tail. Head feature hh ¼ ½h1

h; . . . ; h
o
h� is

the combination of each vi and GRU features encoding the
word sequence th. Relation feature hr is encoded by text
embedding layer. Tail feature ht is the combination of the
visual feature generated by the previous module and the
GRU feature encoding tt. Then, an MLP fmðhi

h þ hr; htÞ out-
puts attention score on object vi by calculating the matching
score of current head, relation and tail. Find_KG_Reverse
is similar to the Find_KGmodule, where the only difference
is that the positions of x and vi are exchanged. In addition,
the architecture of Find_Hypernym is the same as the Find
module, which uses the attended question feature to retrieve
the objects in the image.

The NMN-CS is trained in two stages: training the pro-
gram prediction module and training the neural modules.
For training the program prediction module, we minimize
the cross-entropy losses of predicted function names. For
training the neural modules, we use the predicted function
layouts to assemble the neural modules and minimize the
binary cross-entropy losses for the answers. More details
about this baseline are shown in the supplementary mate-
rial, available online.

Memory-VQA. We also design a simple KB-aware base-
line to explicitly utilize knowledge items to answer the
questions, named as Memory-VQA. This baseline follows
the spirit of memory network [40] which encodes the input
materials (e.g., the knowledge items and the image in the
CRIC) as memories, then uses the question to trigger an iter-
ative attention process which allows the model to retrieve
useful information to answer the question.

The overall architecture of this model is shown in Fig. 12.
The whole model is composed of two parts. The first part
realizes the feature extraction of three types of input: it
implements a GRU to obtain question features qqqqqqq, uses a
Faster-RCNN to obtain image features, denoted as object
memory bank vvvvvvv, and applies a heuristic retrieval method and
a GRU to roughly select candidate knowledge items and
encode them, where the output is denoted as KB memory
bank kkkkkkk. More concretely for the heuristic KB retrieval, first
every word in questions is used to retrieve the items in our
collected ConceptNet-V-D by checking if the head or tail of

Fig. 11. Illustration of NMN-CS. (a) Framework of NMN-CS. A program
prediction module generates the function layout, then predicted func-
tions are performed to output the answer. (b) Find_KG module. Three
networks extract the features of three parts of the knowledge item.
Then, the Find_KG module calculates their matching score as the atten-
tion value. We add an element BLANK at the end of the question for the
case that network fh doesn’t need to attend on any word in the question.

Fig. 12. Overall architecture of Memory-VQA model. The model encodes
the image and the knowledge items into two memory banks, respec-
tively, and then implements an iterative attention mechanism to locate
relevant knowledge items and objects to answer the question.
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a knowledge item contain such word; then a GRU selects
specific relation type of items by predicting the relation
type from the question. The second part implements a two-
step attention to find proper knowledge items and object
regions used for answering. The first step implements an
attention mechanism fk [58] over the knowledge items,
which first predicts attentions aaaaaaak based on the question fea-
ture qqqqqqq, object memory bank vvvvvvv, and KB memory bank kkkkkkk and
then gives a weighted average over the KB memory bank kkkkkkk
as the output. We then combine the output with the ques-
tion embedding to obtain hhhhhhhqk:

hhhhhhhqk ¼ FCðfkðkkkkkkk; qqqqqqq þmeanðvvvvvvvÞÞÞ � FCðqqqqqqqÞ; (2)

where FC denotes an fully connected C layer and � denotes
element-wise multiplication. The second step uses the same
architecture to calculate the attention scores over object
regions aaaaaaav and combines features hhhhhhhqkv of qqqqqqq, kkkkkkk and vvvvvvv as the
output. Specifically,

hhhhhhhqkv ¼ FCðfvðvvvvvvv; hhhhhhhqkÞÞ � FCðhhhhhhhqkÞ; (3)

where fv is the attentionmodule. Finally, anMLP predicts the
answer probabilities and aaaaaaav is used to output the target object.

Memory-VQA+latt: Compared to Memory-VQA, this
baseline additionally applies a cross-entropy loss on atten-
tion score.

MAC:MAC [63] is a state-of-the-art modular VQAmodel
for CLEVR and GQA which decomposes a question into a
series of attention-based reasoning steps.

MAC-CS: We extend MAC to access of knowledge items,
named as MAC - CommenSense reasoning (MAC-CS). Spe-
cifically, MAC-CS inherits the knowledge retrieval and
knowledge representation modules in Memory-VQA to
obtain a set of knowledge items related to the question.
Then, we replace the original input image region feature of
MAC with concatenation features of knowledge items and
image region features. Thus, the reasoning module can per-
form attention on both vision and knowledge modality.

ViLBERT: Recently, many works [64], [65], [66], [67], [67],
[68], [69], [70], [71], [72] propose powerful self-supervised
learning approaches to learn the joint representations between
image and language based on BERT model [73]. We select the
ViLBERT [64] pre-training on 12 vision and language data-
sets [66] as the representative of this branch of works. In addi-
tion, to output the target object, we add an attention module
over extracted visual features which is the same as inMemory-
VQA, then use attended features to output the answer.

ViLBERT+latt: Compared to ViLBERT, this baseline adds
a cross-entropy loss on attention score.

ViLBERT w/o. PT+latt:We also evaluate a version without
pre-training for ablating the advantages of ViLBERT.

ViLBERT+ERNIE+latt: Knowledge representation is one
of the most important challenge of CRIC. However, since
the knowledge base used in VQA is usually much smaller
than the one in NLP tasks, it could be hard to obtain a
promising knowledge representation with limited knowl-
edge items. Thus, we propose to integrate a language
Transformer pre-trained on large-scale knowledge bases,
ERNIE [74], into the vision-language Transformer to
improve the knowledge reasoning ability.

The architecture of the ViLBERT+ERNIE+latt is shown
in Fig. 13. It has three modules: (1) A vision-language
Transformer, ViLBERT, aims to extract the image and
question feature. (2) A knowledge Transformer, ERNIE,
aims to extract the feature of candidate knowledge items.
Specifically, the candidate knowledge items are obtained
in the same way as Memory-QA. And the knowledge
items are input in the form of word sequences, where each
knowledge item is separated by a [SEP] token, as shown in
Fig. 13. Finally, an attention module uses the pooled
knowledge items feature generated by knowledge Trans-
former and the pooled question generated by vision-lan-
guage Transformer to locate the target image region and
then predict the answer. In implementation, for the pool-
ing function, we follow the ViLBERT, simply taking the
hidden state corresponding to the first token as the pooled
feature.

4.2 Analysis and Diagnosis

In this section, we analyze model performances on different
types of questions requiring different reasoning skills to
compare existing reasoning mechanisms (Sections 4.2.1,
4.2.2 and 4.2.3). Further qualitative and quantitative experi-
ments are conducted to show the necessity of our collected
additional annotations in model diagnose and training
models (Sections 4.2.4 and 4.2.5). Finally, we use modular
network to investigate the main challenges of CRIC task
(Sections 4.2.6, 4.2.7, 4.2.8).

Fig. 13. Overall architecture of ViLBERT+ERNIE+latt model. The ViL-
BERT encodes the image and the question, the ERNIE encodes the
roughly retrieved knowledge items. Then, the combined question, knowl-
edge and image features are used to predict the answer.

TABLE 2
Results on the Test Set of the CRIC, Where Ans Indicates the
Answer Accuracy (%), Grd Indicates the Grounding Accuracy
(%) and Final Indicates the Portion of Questions on Which the
Models Both Correctly Generate Answers and Output Ground-

ing Results
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4.2.1 Overall Comparison of Different Types of

Methods

The overall accuracy and the accuracy for each answer type
are shown in Table 2. We can see that the current methods
achieve at most 55.24% final score. And they struggle on
grounding, where the grounding accuracy of the MAC
method on another VQA dataset GQA can achieve 82.2%
accuracy as reported in [12] while it achieves only 31.46%
on the CRIC. These results suggest that the CRIC cannot be
solved simply by transferring the standard VQA model to
such task, but requires a more delicate model to build the
connections between the commonsense and images. Com-
paring the Bottom-Up with MAC and NMN-CS, we observe
that the compositional methods achieve better results on the
CRIC dataset. This could be because these models decom-
pose the complex task into many simpler sub-tasks which is
a more robust way to learn the answering skill. However, it
is found that the performance gain of compositional models
on CRIC is not expected as large as on CLEVR. The reason
could be that the cumulative error impacts the final results.
For real-image and commonsense-related QA, the sub-tasks
are much more difficult than corresponding sub-tasks in
synthetic-images, and the new proposed commonsense-
related functions still need to be solved by some sophisti-
cated designed modules. Comparing the results of Mem-
ory-VQA and Bottom-Up, we can see that the use of
external knowledge also brings significant improvement.
More analysis of Memory-VQA will be presented in
Section 4.2.5.

Moreover, we can see that SF and TRIG both do not out-
perform Memory-VQA. The reason could be that these
SOTAs on FVQA and OK-VQA focus more on knowledge
retrieval, so they choose to transform the image into the text
to better locate the related knowledge. However, when fac-
ing CRIC, which focuses more on the joint reasoning of the
two modalities, transforming the image into texts will lose
non-negligible key visual information in answer prediction.

In addition, ViLBERT with multi-task training (i.e., ViL-
BERT þlatt) shows substantial superiority compared to other

models; still, the challenge is far from solved. Here we would
like to further illustrate why the ViLBERT series models turn
out to be the best-performing model. The advantages of ViL-
BERT could lie in three aspects: 1) BERTmodel pre-trained on
large-scale text corpusmay contain a certain level of common-
sense, which is also helpful for commonsense VQA. 2) The
ViLBERT architecture with lots of parameters has a larger
model capacity and strong visual reasoning ability. 3) The
multimodal pre-training of ViLBERT can better align vision
and language and benefit visual reasoning. By comparing the
results of Memory-VQA + latt, ViLBERT w/o. PT + latt, we
can see that the ViLBERT architecture brings the greatest ben-
efits (ViLBERT w/o. PT + latt outperforms Memory-VQA +
latt by 11.52% on the Final Score (FS)). The language pre-train-
ing also helps (Q-Only-BERT outperforms Q-Only-GRU by
3.85% on FS).Moreover, vision-language pre-training contrib-
utes the smallest but still promising improvements (VilBERT
+ latt outperformsVilBERTw/o. PT + latt by 3.37% on FS).

It also can be seen that introducing pre-trained knowledge
Transformer (i.e., ViLBERT+ERNIE+latt) further benefits the
performance at a certain level. However, we would expect
that combining multiple types of Transformers have greater
potential. Knowledge Transformer has a strong knowledge
reasoning ability, as proven in KB field [75], however, due to
the separate pre-training procedures of ERNIE and ViLBERT,
the features of knowledge items may not be particularly well
aligned with the visual features. As we can see, the improve-
ment in QA (Ans Score) is larger than in grounding (Grd
Score). We believe a future valuable direction is to design
some novel objectives for joint pre-training multiple types of
Transformers or prompt fine-tuning techniques to better align
the features of differentmodalities.

4.2.2 Effect of Question Size

In this part, we compare the performances of models on
questions in different difficulty degrees. Specifically, in
Fig. 14, we present the performances of four types of repre-
sentative models on different question sizes. The question
size is measured in two metrics. (1) The question size is

Fig. 14. Top: The performances of representative models on different sizes of question related scene and knowledge graph. Bottom: The performan-
ces of models on different question lengths.
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considered as the size of question-related scene graph and
knowledge graph, that is, the total number of object-attri-
bute tuples, visual relationship triples, and knowledge
items. This measure of question size represents the number
of reasoning steps. (2) The question size is equal to the ques-
tion length. It indicates the amount of information used for
object grounding.

From Fig. 14, we can see that for answer score, the shapes
of curves for two metrics of question size both are U-like,
rather than an intuitive result that longer questions should
be harder. The curves of ground score are also somewhat
counterintuitive; with the increase of question size, the per-
formances of models don’t drop, but are relatively stable
and even slightly better. The primary causes of this interest-
ing phenomenon could be some inherent commonsense pri-
ors in questions which mirror the bias of the world. The
small size questions are easier to answer because these
questions usually directly query a knowledge item, so the
models are likely to overuse knowledge priors to guess the
answer. However, overusing priors causes the damage of
correctness and robustness on grounding. Besides, the short
question also provides limited information to locate the tar-
get object, while longer questions usually depict the target
object from more different perspectives. Thus, though
shorter questions are easier to answer, locating the object
region with a concise query is still challenging.

Such observations suggest that the answering long ques-
tions are difficult for current methods, for commonsense
questions, and grounding to images with concise common-
sense query is also challenging. The results further demon-
strate the importance of comprehensive VQA model
evaluation, especially for the commonsense-related ques-
tions. The answer score and ground score play complemen-
tary roles in evaluating VQA models to better reveal their
superiorities and limitations.

4.2.3 Effect of Compositional Commonsense

Questions

In this section, we analyze the robustness of models by com-
paring the performances between the compositional and the

simple problem. Specifically, the questions in CRIC are
divided into two groups: one group of questions directly
asks the content in a knowledge item which is less composi-
tional, e.g., QueryObjKG, VerifyKG; another group
requires an indirect use of knowledge items which are more
compositional, e.g., QueryObjSG, VerifyAtt. In the
Fig. 15, we compare the performances of models on these
two groups of questions, QueryObjSG versus Quer-

yObjKG, and VerifyKG versus VerifySG. From the
results of answer score of query-type questions (top left
figure), we can see a large gap between QueryObjSG and
QueryObjKG. While for ground score (top middle figure),
there is only a small gap between the two types of questions.
In other words, under a similar grounding ability, it is more
difficult to answer questions which indirectly query the
commonsense. This demonstrates that the compositional
questions effectively evaluate whether the model really
understands the vision and commonsense. Besides, the per-
formances of a model are very close on VerifyAtt and
VerifyKG questions (bottom figures). This may be because
the main function of knowledge prior is to reduce the num-
ber of candidate answers, while this function is invalid in
answering verify-type questions.

These results also reflect that increasing the grounding
performances is one of the most important direction for cur-
rent methods. It limits the performance of compositional
questions.

4.2.4 Effect of Attention Supervision

In this section, we show the importance of our collected
additional attention annotations in model training and eval-
uation. In Table 2, we present three sets of models, Bottom-
Up, Memory-VQA, ViLBERT, and their corresponding
versions with attention supervision. Adding attention super-
vision brings significant improvements in ground scores and
final scores for all three models and slight improvements in
answer scores for Memory-VQA and ViLBERT. This shows
that even if the model has an explicit attention module, it is
still difficult for the model to learn a robust object localization
spontaneously. Especially for questions whose answers come

Fig. 15. The performances of models on different types of questions. The top row shows the scores on QueryObjSG and QueryObjKG questions. The
bottom row shows the scores on VerifyAtt and VerifyKG questions.
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fromknowledge items, in the topmiddle of Fig. 15, we can see
that themodels achieve larger improvement on QueryObjKG

questions after adding attention supervision. Besides, it is
found that the stronger the model, the more noticeable this
phenomenon. ViLBERT itself is a very outstanding model in
object localization proven in many other tasks [66], but it is
difficult to give full play to this advantage without adding
appropriate supervision information.

These results suggest that our attention annotations are
also critical for evaluation and we may need to utilize the
attention annotations to increase the model’s robustness
and allow the model to output meaningful intermediate
results.

4.2.5 Effect of Explicit Use of Knowledge Items

The main difference between Bottom-Up andMemory-VQA
is that the latter has an additional branch that explicitly uti-
lizes the knowledge items to answer the question. From the
results of these two types of models in Table 2, we can see
that the explicit use of commonsense knowledge not only
brings an improvement in answering, but also a significant
improvement in grounding (> 9% absolute improvement).
This is an interesting phenomenon: what we provide to the
model is actually more clear knowledge prior information,
but this information does not exacerbate overfitting on pri-
ors (i.e., achieving higher answer score and lower ground
score), instead, it helps the model gain better robustness
and learn more meaningful intermediate result (i.e., achiev-
ing an obvious improvement in grounding).

In the Fig. 16, we show the visualized attention scores of
Memory-VQAþlatt over knowledge items. First, we can see
that the answering process of VQA is complicated, and
errors may occur in every step, e.g., knowledge attention
(Q3), and visual concept recognition (Q4). In addition, the
existing model is not strictly modular design, but in an end-
to-end manner. Therefore, the correct answer does not guar-
antee the correct intermediate result and vice versa. For
example, the model may have located the correct region
based on the knowledge information mentioned in the ques-
tion, but made a mistake in recognizing the attribute (Q4).
Or, although the model mistakenly selects the knowledge
item, it can still have a chance to resort to the visual and lan-
guage information in question to correctly guess the answer
(Q3). This phenomenon further reveals that it is really very
complex and important to conduct a comprehensive VQA
evaluation. CRIC hopes to ease the difficulty in evaluation
by providing various annotations to diagnose the compli-
cated pipeline.

We can also see that the model usually attends on the rel-
evant knowledge item with a higher score (the items in
green or orange background). But, when many object cate-
gories meet the commonsense requirement of a question, it
is still difficult to accurately locate the most relevant knowl-
edge item, e.g., Q3. In other words, it is crucial for solving
the CRIC task to design models to align knowledge and
visual content locally. Besides, we also find that the distri-
bution of the model’s attention scores in some cases is rela-
tively uniform. This is consistent with the intuition that
sometimes the model needs to consider not only the

knowledge item related to the target object, but also other
knowledge items that help exclude the wrong objects.

The above experiments show that explicitly utilizing
knowledge items is very effective. Only a proposed straight-
forward mechanism to explicitly use knowledge items
shows obvious improvements. We believe that further
exploring some techniques about jointly representing vision
and knowledge will great benefit the performance, e.g., how
to align the commonsense and vision, represent knowledge
items, and usemultiple knowledge items simultaneously.

4.2.6 Challenging Subtasks of the CRIC

To better display the CRIC dataset’s challenges, we conduct
an additional experiment that tests the performance of each
module in NMN-CS which can access ground-truth atten-
tion inputs and text inputs (denoted as NMN-CS-GT). More

Fig. 16. Visualization of Memory-VQA+lans’s attention scores on knowl-
edge items. The highlighted knowledge items are the items used for gen-
erating their question. The red bounding boxes are predicted target
objects.
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specifically, the outputted attention scores of grounding-
related modules are passed through a sigmoid layer to
determine if attending on the corresponding object candi-
date or not. In addition, the grounding modules are trained
by ground-truth attention outputs with the weighted binary
cross-entropy loss, where the weighted loss is to tackle the
problem that attended objects and background objects are
highly imbalanced. And the recognition module is trained
by binary cross-entropy loss.

For program prediction, the accuracy of function name
prediction is 99.25%. This indicates that understanding the
question is relatively easy. For grounding-related modules,
we define the ground score as the IoU score of the output
object set Opredict and the ground-truth object set Ogt

score ¼ jOpredict \Ogtj
jOpredict [Ogtj ; (4)

where j:j indicates the number of elements in a set. The IoU
score is a strict metric because a slight difference with Ogt

will cause a relatively low score when jOgtj is small, so this
metric can better expose the flaw of the grounding model.

From the results in Table 3, we can identify that Find and
Find_Hypernym tasks are relatively easy, but it is still far from
satisfactory. In addition, though the score of Find_Hypernym
is higher than Find, it doesn’t mean that Find_Hypernym is
much easier. The Find_Hypernym sometimes requires the
model to locate objects belonging to “object” or “thing”, which
is relatively easy, while correctly finding objects belonging to a
category, such as “furniture” or “vegetable”, is still challenging.
Moreover, Find_KG related tasks are relatively more difficult
than others. Along with the phenomenon in Table 2 that many
models achieve high accuracy in answering, it shows that it is
easy to understand the commonsense on semantic-level. Still, it
isn’t easy to learn to ground the commonsense knowledge into
the images. For the Recognition task, the score is the accu-
racy of the output. We can see that the Recognition task is also
relatively difficult for current models. This might be because,
the visual genome dataset involves a large number of visual
concepts, including thousands of object categories and attrib-
uteswith diverse semantics.

Fig. 17 shows the qualitative results of the NMN-CS-GT,
where modules are separately trained with ground-truth
function output. It can be seen that even though the whole
model predicts the correct answer, it is still challenging to
provide precise intermediate attention results. For example,
the model correctly predicts that fork can be used for mov-
ing the vegetable for Q1, while it doesn’t correctly find the
vegetable and all forks in the image.

In brief, many sub-tasks of CRIC is difficult and the cumu-
lative error is the main bottle neck restricting the multi-step
reasoning performance of modular networks. We may need
to propose new representations to improve of each module,

or present a new framework of modular network to avoid
the cumulative error. Besides, it also shows that our pro-
vided rich ground-truth annotations can assist in diagnosing
and improving the robustness of futuremodels.

4.2.7 Will KB-Related Challenges be Easily Solved as

Long as the SG is Correctly Predicted?

To answer this question, we test several new baselines with
different types of inputs:

BERT - Predicted-SG. It takes the question and scene
graph predicted by an existing SOTA scene graph genera-
tion (SGG) model [76] as input, then answer the question.
Specifically, the scene graph is transformed into a sequence
by listing the relationships separated by [SEP] token, e.g.,
“boy hold cup [SEP] boy wear hat [SEP] . . .”. Then, we con-
catenate the question with the transformed scene graph,
and feed it into the BERT model to output the answer.

BERT - GT-SG. This model is similar to the BERT + Pre-
dicted-SG, but takes the question and Ground Truth Scene
Graph (GT-SG) of the given image as input, then answers
the question.

BERT - SG & KG for QAG. This model takes the question
along with SG and KG used for generating the QA sample
as input (i.e., the relationships unrelated to the question are
filtered out), then predicts the answer.

From the results in Table 4, we can see that given GT-SG,
the model does have a significant performance improve-
ment, but it is still far from 100% accurate. The accuracy is
close to 100 only when the specific SG and KG for generat-
ing the question are given. This indicates that there are still
many challenges remained. Specifically, 1) The model still
needs to find the most relevant relationships to the ques-
tions from many relationships. 2) The models also need cor-
rectly retrieve knowledge items from the whole knowledge
graph. Since we rephrase the knowledge entities in generat-
ing questions, e.g., using referring expressions to replace
the object name in knowledge items, it challenges models’
knowledge retrieval abilities. 3) The compositional nature
of CRIC also introduces the challenge of multi-hop reason-
ing on multiple knowledge items and relationships.

In addition, the performance of BERT - Predicted-SG
shows that scene graph predicted by current SGG methods
is still hard to be an alternative of an image in QA reasoning.
It may be difficult for models to output a scene graph with
complete information about an image because a picture is
worth a thousand words. Even ground truth SG is likely to
miss some attributes of objects or relationships between
objects in annotating. Thus, improving the quality of the pre-
dicted scene graph is undoubtedly one potential direction,
but we want to emphasize that although CRIC is based on
GT-SGs which are explicit representations of images, our
dataset is also friendly to other methods which implicitly
represent the image, like, NMN, ViLBERT. CRIC hopes to
support the research of all possible types of methods.

4.2.8 Can a GQA Method Solve CRIC Easily?

From the results of compositional models, MAC, MAC-CS,
NMN-CS, in Table 2 with monolithic method like Bottom-
Up, we can see that the compositional models do have obvi-
ous advantages over the monolithic model, but it is still far

TABLE 3
The Performance of Each Module in NMN-CS-GT

Find Relate Find_Hypernym Find_KG Recognition

Score 40.56 18.03 47.61 16.72 55.34

The scores of grounding-related module are IoU scores of predicted object set
and ground-truth object set. The score of Recognition module is accuracy.
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from satisfactory. We believe there are some additional
challenges in knowledge retrieval, representation, and joint
reasoning on knowledge and vision for GQA methods. We
also train the ViLBERT model on CRIC and evaluate it on
GQA, and vice-versa. From Table 5, we can see obvious per-
formance drops under zero-shot transfer, both in GQA to
CRIC and CRIC to GQA settings. The result reveals that the
question domains of the two datasets are rather different. It
indirectly shows that CRIC cannot be solved by simply
transferring a GQAmodel.

5 DISCUSSIONS

ComparisonWith FVQA, GQA, and OK-VQA. The CRIC extends
the VQA task along two directions: towards multi-hop reason-
ing and understanding of non-visual knowledge of multiple
objects, as illustrated in Fig. 1. Here, we introduce more details
about the key features of the CRIC that differentiate it from
existing ones, e.g., FVQA,GQA, andOK-VQA.

1) The CRIC introduces new types of compositional
commonsense-related questions, e.g., QueryObjSG, VerifyAtt,

Fig. 17. Question answering examples of NMN-CS-GT which uses ground-truth text inputs. Though the model correctly answers the questions, the
model still makes some mistakes in the intermediate modules. Precisely accomplishing each sub-task is still challenging.

TABLE 4
The Answering Score of BERT Models With Different Types of Inputs

Input Verify Recognize Overall Score

BERT

Question (Q) 71.30 53.97 59.03
Q + Image (i.e., ViLBERT + latt) 87.63 73.42 77.54
Q + Predicted-SG 73.90 58.81 63.21
Q + GT-SG 94.33 89.80 91.12
Q + SG & KG for QAG 99.73 98.91 99.14
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etc., to evaluate some unique capabilities. The questions in
GQAmainlymeasure the understanding of visual contents (no
external knowledge sources are used to generate questions).
The pioneering commonsense VQA work, FVQA, primarily
focuses onQueryObjKG type questionswith limited visual rea-
soning. The questions of OK-VQAmainly evaluate the breadth
of knowledge. It requires to crawl information from the inter-
net. In comparison, our new types of questions mainly aim to
investigate whether the model can ground the commonsense
into the visualworld.

2) As far as we know, our dataset is the first large-scale
commonsense VQA dataset where attention results, the pro-
gram for answering questions and question-related scene
graph and knowledge graph are all available. Because of
that, we can more comprehensively evaluate various types
of methods. Besides, in Sections 4.2.4 and 4.2.5, we also
show that different types of annotations facilitate develop-
ing more robust commonsense VQAmodels. Multiple types
of annotations also facilitate different types of models to be
merged.

Open Issues of Auto-Generated Datasets. As another new
automatically-generated dataset, our CRIC inherently has
the following advantages: 1) Ease the risk of overusing pri-
ors. As stated above, the CRIC addresses this issue in each
vital stage during construction. 2) Provide rich annotations
for detailed evaluation and diagnosis. 3) Easy to measure
the complexity of questions. The number and the types of
sub-tasks involved in a question can assess its complexity
for better diagnosis. 4) Easy to extend the dataset on new
images or knowledge items. While embracing such favorite
features at a low cost of human labor, like other auto-gener-
ated datasets (e.g., CLEVR, GQA), our CRIC faces the chal-
lenge of maintaining questions’ naturalness. To tackle this
issue, a certain level of human interference, like rephrasing
the questions, would be necessary in the future.

6 CONCLUSION

This paper introduces the CRIC dataset that evaluates
VQA systems on answering questions requiring composi-
tional reasoning on the vision and commonsense. To build
this dataset, we first propose a new Knowledge Graph for-
mat for easily aligning knowledge items to visual entities
and depicting the commonsense relations between objects.
Then, we propose an efficient method to generate numer-
ous QA pairs and rich annotations automatically. Our gen-
eration method has better scalability and requires lower
cost, easing the difficulty of building a complex VQA
dataset.

Further experiments analyze the current four representa-
tive types ofmodels. The results demonstrate our annotations’
effectiveness on both comprehensive evaluation and enhanc-
ing the models’ performances and robustness. The CRIC also

brings new challenges for representation and reasoning of
vision, question, and knowledge, e.g., how to design a model
to capture the joint of graphs’ global information in two
modalities; how to conduct multi-hop reasoning on these two
graphs explicitly; how to uniformly represent the common-
sense and vision to better ground the commonsense.And vari-
ous types of annotations will help researchers integrate the
ideas of multiple types of models or propose a new unified
framework to solve these challenges. For example, redesign
the BERT as a modular network, equip modular networks
with the ability of explicitly using the commonsense, or pro-
pose a pre-training model processing vision, language, and
knowledge items simultaneously. In brief, we hope the CRIC
can help drive the research of more transparent and robust
models for designing more advanced AI agent reasoning on
the vision and commonsense.
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